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Time series analysis of ionization waves in dc neon glow discharge
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The dynamics of dc neon glow discharge is examined by calculating a Lyapunov exponent spectrum
�LES� and correlation dimension �Dcorr� from experimental time series. The embedding theory is
used to reconstruct an attractor with the delay coordinate method. The analysis refers to periodic,
chaotic, and quasi-periodic attractors. The results obtained are confirmed by a comparison with
other methods of time series analysis such as the Fourier power spectrum and autocorrelation
function. The main object of the present work is the positive column of a dc neon glow discharge.
The positive column is an excellent model for the study of a non-linearity plasma system because
it is nonisothermal plasma far from equilibrium. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2219420�
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I. INTRODUCTION

Plasma is a typical nonlinear dynamics system with a
large number of degrees of freedom; it is of interest as a
medium for testing the universal characteristics of chaos. In
the past decade, a number of nonlinear dynamics phenomena
have been studied in gas discharge plasmas.1–7 Quasi-
periodic transitions to chaos have been observed in plasmas.8

The understanding of quasi-periodic attractors and the re-
lated strange nonchaotic attractors is significant not only in
nonlinear dynamics but also in plasmas. Analysis of time
series from dynamical systems is an important issue in many
different fields of engineering and science. The most com-
mon tools for this analysis are the Fourier power spectrum
�FPS�, correlation dimension �Dcorr�, and Lyapunov exponent
spectrum �LES�.

The aim of the present work is to study and investigate
the state of the plasma of ionization waves of dc neon glow
discharge in the region near the anode of the positive column
region.

The experiment was performed in a sealed cylindrical
discharge tube �Pyrex glass� filled with pure neon gas at a
pressure of p=3.4 Torr. The tube had an internal radius
of r=2.0 cm and the separation distance between the two
electrodes �cold hollow cathode and plane anode� was
fixed at L=70 cm. Discharge operation was sustained by
an external voltage and the discharge current I limited by
a load resistor R=50 k� �see Fig. 1�. If the discharge cur-
rent exceeds a low-current threshold, the positive column
of the discharge destabilizes through the ionization in-
stability. The discharge current I acts as a bifurcation
parameter and variations of I allow one to observe co-
herent waves, quasi-periodic regimes, weak space-time
chaos, and strange nonchaotic attractors. The light fluctua-
tions are recorded near the anode with a sampling rate
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II. GEOMETRY OF PHASE-SPACE RECONSTRUCTION

In most cases only one characteristic quantity of experi-
ment is obtained as a time series. Then a trajectory through
m-dimensional phase space is reconstructed from this time
series. According to the reconstruction theory: the recon-
struction is valid for an embedding dimension �dembed�,
dembed�2dattractor+1, and in the case of infinite data points
N→�, even for arbitrary delay times, where dattractor is the
attractor dimension, this is a sufficient condition.9,10 There
may be a lower embedding dimension. Therefore, procedures
have to be found to allow both the choice of a suitable em-
bedding dimension and a convenient delay time. It makes
sense to choose dembed as small as possible because it reduces
the computing time for analysis of the reconstructed attractor
such as correlation dimension and LES. On the other hand,
the LES will not be falsified by the determination of false
Lyapunov exponents, which appear if the embedding dimen-
sion is overestimated. So, the optimal value for dembed is
given by the false-nearest-neighbor method. At dembed the
attractor is unfold and this value is important in calculating
LES and Dcorr.

To calculate LES and Dcorr, we reconstruct a dimension
orbit dm,11

xi = �xi,xi+m,xi+2m, . . . ,xi+�d−1�m� .

From the measured integrated light intensity x�i�t�
��i=1¯N�, with �t being the sampling time interval, de is
the embedding dimension, and �=m�t is the time delay. By
choosing x j such that �x j −xi � �r for small r, the evolution of
small vectors �x j −xi� can be obtained,

x j+1 − xi+1 = Ti�x j − xi� .

We can decompose the matrix Ti=QiRi into orthogonal ma-
trices Qi and upper triangular matrices Ri. The Lyapunov

exponent �i is given by

© 2006 American Institute of Physics

http://dx.doi.org/10.1063/1.2219420
http://dx.doi.org/10.1063/1.2219420


  PROOF CO

 

1-2 Hassouba et al. Phys. Plasmas 13, 1 �2006�
  PROOF COPY 036607PHP  
  PRO
O

F CO
PY

�i =
1

K
�
j=0

K−1

ln�Rj�ii, i = 1,2, . . . ,dm,

where K is a given number of matrices Ti. The Kaplan-Yorke
dimension �DKY� can be given from11

DKY = k +

�
i=1

k

�i

��k+1�
,

where k is the maximum integer such that the sum of the k

FIG. 1. Experimental setup; the light intensity is recorded with a
photodiode.

FIG. 2. Experimental time series for light intensity near the anode for dc
neon glow discharge at different sampling currents: I=48.2 , 51.9 , and
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54.9 mA for sampling rate 500 kHz.
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largest exponents is still non-negative. The Kaplan-Yorke di-
mension DKY coincides with the correlation dimension.

We calculated the correlation dimension, which was in-
troduced by Grassberger and Procaccia.12,13 First, one can
define the correlation sum for a collection of points xn in

FIG. 3. Power spectrum density �PSD� for three different attractors at dif-
ferent currents: I=48.2 , 51.9 , and 54.9 mA.

FIG. 4. Autocorrelation function �ACF� for three different experimental
time series at three different discharge currents: I=48.2 , 51.9 , and

54.9 mA.
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some vector space to be the fraction of all possible pairs of
points, which are closer than a given distance r. Then the
correlation dimension is defined as13

Dcorr = 	 = lim
N→�

lim
r→0

log2C�m,r�
log2r

,

where C �m ,r� is the correlation integral, which measures the
number of points x j that are correlated with each other in a
sphere of radius 
 around the reference points xi,

12

C�m,r� =
1

Nref

1

N
�
i=1

Nref

�
j=1

N

��r − �xi − x j�� ,

where � is the heavy side function ��=0 for the argument
less than zero, otherwise �=1�, N is the number of data
points, and Nref is the number of randomly chosen reference
points �usually Nref is smaller than N in order to save com-
putation time�. �xi−x j� is the distance of two points along the
curved manifold of the attractor. We usually measure the
distance from the Euclidean norm as follows:14

�xi − x j� =��
k=1

d

�xi,k − x j,k�2,

where d is the dimensionality of phase space. When log2C�r�
is plotted versus log2r �log-log plot�, then the slope of the

FIG. 5. Lyapunov exponent spectrum �LES� for three different experimental
time series in Fig. 2 at three different currents: I=48.2 , 51.9 , and 54.9 mA.
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resulting data may be a straight line or close to it.
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III. RESULTS AND DISCUSSION

The experimental time series for three different states of
plasma are represented in Fig. 2, which analyzed at sampling
rate 500 kHz at different sampling discharge current. These
time series denote three different attractors.

The power spectrum density �PSD�, which is calculated
from the matlab program, is represented in Fig. 3. The PSD
indicates whether the system is periodic or quasi-periodic. It
is very good for the visualization of periodic and quasi-
periodic phenomena and their separation from chaotic time
evolutions. However, the analysis of the chaotic motions
themselves does not benefit much from the PSD, because
they lose phase information. This is essential for the under-
standing of what happens on a strange attractor. At I
=48.2 mA, the PSD has multiple narrow peaks, which indi-
cate a periodic attractor. At I=51.9 mA, the PSD shows the
plasma state is a quasi-periodic attractor. At I=54.9 mA, the
PSD is smooth continuous and the broad peak indicates that
the attractor is a strange attractor. In order to confirm the type
of the attractor, we calculated the correlation dimension and
Lyapunov exponent spectrum.

The autocorrelation function �ACF� was derived from
the time series data to classify the dynamic system: periodic,
quasi-periodic, and chaotic attractor. The ACFs at different
attractors are represented in Fig. 4. At I=48.2 mA, the ACF

FIG. 6. Correlation dimension �Dcorr� for three different experimental time
series in Fig. 2 at three different currents: I=48.2 , 51.9 , and 54.9 mA.
shows a periodic attractor; it is a sinusoidal wave and does
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not decay with the time. At I=51.9 mA, the ACF shows a
quasi-periodic attractor, while for I=54.9 mA the ACF
shows a chaotic attractor.

The LES was calculated at different discharge currents
and sampling rates, 500 kHz, as represented in Fig. 5. At
I=48.2 mA, the result attractor can be identified as �0,-,-,-�
within the error bars. The nonzero value of LES may be
coming from the formation of the attractor, where the trajec-
tories of the attractor diverge and converge in phase space.
At I=51.9 mA the attractor is identified as �0, 0,-,-�, which
indicates a quasi-periodic attractor, while at I=54.9 mA the
attractor is identified as ��, 0,-,-�, which indicates a chaotic
attractor.

The Dcorr was calculated from the three time series at
sampling rate 500 kHz as shown in Fig. 6. In m-dimensional
embedding, we look for a plateau in the plot of D2 �m ,r�
versus log�r�, a range of r �the scaling region� over which D2

�m ,r� has a constant value or converges to a straight line. It
is then taken to be the correlation dimension for the attractor.
The length scale r is normalized to the largest distance in
each embedding dimension. This is done in order to use a
length scale derived from the size of the attractor. With this
normalization, the correlation integral C �m ,r� reaches its
maximum value �i.e., saturates� at the same value of r mak-
ing it easier to compare the plateau for different embedding
dimensions. For small values of r, as well as for large values
of r, the correlation dimension increases with increasing the
embedding dimension. The behavior at small values of r is
characteristic of noise, which has infinite dimension. At large
r’s, the increase of the slope is induced in part by using a
relatively small number of embedding vectors in a high di-
mensional state. It becomes more pronounced and extends to

TABLE I. The results of numerical analysis for time series near the anode

Initial current �mA� Sampling rate �kHz� Correlation dime

I=48.2 500 1 �Periodic attra

I=51.9 500 2.15 �quasi-perio

I=54.9 500 2.6 �chaotic attra
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smaller values of r as m is increased. Thus in the process of
036607PHP  

increasing the embedding dimension, to check the conver-
gence of the calculation, one uses the best value of Dcorr,
which is independent of m and r. At I=48.2 mA, the value of
Dcorr is an integer value, which indicates a periodic attractor.
At I=51.9 mA, the value of Dcorr denotes the quasi-periodic
attractor. At I=54.9, the value of Dcorr has a noninteger value
that indicates a strange chaotic attractor with low dimension.

The results of numerical calculations are summarized in
Table I.
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